Research Physical

Physical Research

The Department of Chemistry at the University of North Carolina at Chapel Hill, offers a wide range of research opportunities in theoretical and experimental physical chemistry. Our program has broadened from its traditional areas of excellence in molecular chemical physics to include research activities in biophysical and materials sciences. Experimental efforts within these areas involve development and applications of state-of-the-art instrumentations, such as high-resolution ultra-fast laser systems, molecular beam techniques, multi-dimensional spectroscopies, and near-field optics, et cetera.

In addition to traditional areas of chemical theory, recent theoretical chemistry research involves development and applications of new computational methods in quantum/statistical mechanics and polymer physics for studying novel physical phenomena in a wide range of systems from nano-materials to biological membranes. Students have access to several massively parallel high-performance computers at UNC Research Computing, one of the best university computing facilities in the country.

The University of North Carolina at Chapel Hill is also home to home to a number of theoretical/computational research groups that are interested in studying exciting problems in molecular, materials, and condensed matter sciences.

Recent Research Results

Multidimensional time-of-flight spectroscopy

We present a multidimensional time-of-flight technique in which carrier transport is tracked with a second intervening laser pulse.

Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets

Here, we demonstrate rate enhancement of up to two orders of magnitude for enzymes trapped in submicrometer water nanodroplets suspended in 1,2-dichloroethane.

Stretch-Induced Cavitation: How Critical Cavity Radius and Barrier Energy, Radius, and Energy of a Stable Cavity Depend on the Stretching Factor

In this work, we study how the characteristics of the cavitation mentioned above scale with the amount of applied tension.

Representative Publications

Journal of Chemical Physics.
.
Multidimensional time-of-flight spectroscopy Zhenyu Ouyang, Ninghao Zhou, Meredith G. McNamee, Liang Yan, Olivia F. Williams, Wei You and Andrew M. Moran Journal of Chemical Physics 2021 154 (22), 220901 DOI: 10.1063/5.0047382

PNAS.
.
Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets Kathryn J. Vannoy, Inyoung Lee, Koji Sode and Jeffrey E. Dick PNAS June 22, 2021 118 (25), e2025726118 DOI: 10.1073/pnas.2025726118

The Journal of Physical Chemistry.
.
Stretch-Induced Cavitation: How Critical Cavity Radius and Barrier Energy, Radius, and Energy of a Stable Cavity Depend on the Stretching Factor Max L. Berkowitz The Journal of Physical Chemistry B 2021 125 (17), 4409-4414 DOI: 10.1021/acs.jpcb.1c00096

Biomaterials Science.
.
Coating small-diameter ePTFE vascular grafts with tunable poly(diol-co-citrate-co-ascorbate) elastomers to reduce neointimal hyperplasia Lu Yu, Emily R. Newton, David C. Gillis, Kui Sun, Brian C. Cooley, Andrew N. Keith, Sergei S. Sheiko, Nick D. Tsihlis, and Melina R. Kibbe Biomaterials Science 2021, Advance Article DOI: 10.1039/D1BM00101A

The Journal of Chemical Physics.
.
Dynamical transition orbitals: A particle–hole description in real-time TDDFT dynamics Ruiyi Zhou and Yosuke Kanaia The Journal of Chemical Physics 2021 154(5) DOI: 10.1063/5.0035435

The Journal of Physical Chemistry Letters.
.
Elucidation of Quantum-Well-Specific Carrier Mobilities in Layered Perovskites Ninghao Zhou, Zhenyu Ouyang, Liang Yan, Meredith G. McNamee, Wei You, and Andrew M. Moran The Journal of Physical Chemistry Letters 2021 12 (4), 1116-1123 DOI: 10.1021/acs.jpclett.0c03596

Applied Physics Letters.
.
Microscopic origin of inhomogeneous transport in four-terminal tellurene devices Benjamin M. Kupp, Gang Qiu, Yixiu Wang, Clayton B. Casper, Thomas M. Wallis, Joanna M. Atkin, Wenzhuo Wu, Peide D. Ye, Pavel Kabos, and Samuel Berweger Applied Physics Letters 2020 117 (25), 253102 DOI: 10.1063/5.0025955

Small.
.
Electrolyte-Free Spectroscopy and Imaging of Graphite Intercalation Madeline S. Stark Judy Cheng Hailey Kim Kaci L. Kuntz Scott C. Warren Small 2020, 2004823. DOI: 10.1002/smll.202004823

Distinguishing Energy- and Charge-Transfer Processes in Layered Perovskite Quantum Wells with Two-Dimensional Action Spectroscopies.
.
Zhou, N.; Ouyang, Z.; Hu, J.; Williams, O. F.; Yan, L.; You, W.; Moran, A. M. Distinguishing Energy- and Charge-Transfer Processes in Layered Perovskite Quantum Wells with Two-Dimensional Action Spectroscopies. J. Phys. Chem. Lett. 2020, 11 (12), 4570-4577. https://doi.org/10.1021/acs.jpclett.0c00844

Privacy Preferences
When you visit our website, it may store information through your browser from specific services, usually in form of cookies. Here you can change your privacy preferences. Please note that blocking some types of cookies may impact your experience on our website and the services we offer.