Scroll Top

Sc2C, a 2D Semiconducting Electride


Sc2C, a 2D Semiconducting Electride

Abstract

Electrides are exotic materials that typically have electrons present in well-defined lattice sites rather than within atoms. Although all known electrides have an electropositive metal cation adjacent to the electride site, the effect of cation electronegativity on the properties of electrides is not yet known. Here, we examine trivalent metal carbides with varying degrees of electronegativity and experimentally synthesize Sc2C. Our studies identify the material as a two-dimensional (2D) electride, even though Sc is more electronegative than any metal previously found adjacent to an electride site. Further, by exploring Sc2C and Al2C computationally, we find that higher electronegativity of the cation drives greater hybridization between metal and electride orbitals, which opens a band gap in these materials. Sc2C is the first 2D electride semiconductor, and we propose a design rule that cation electronegativity drives the change in its band structure.



Citation

Sc2C, a 2D Semiconducting Electride

Lauren M. McRae, Rebecca C. Radomsky, Jacob T. Pawlik, Daniel L. Druffel, Jack D. Sundberg, Matthew G. Lanetti, Carrie L. Donley, Kelly L. White, and Scott C. Warren
Journal of the American Chemical Society 2022 144 (24), 10862-10869

DOI: 10.1021/jacs.2c03024


Privacy Preferences
When you visit our website, it may store information through your browser from specific services, usually in form of cookies. Here you can change your privacy preferences. Please note that blocking some types of cookies may impact your experience on our website and the services we offer.