Department of Chemistry
Custom Search

 

Like Us on Facebook!

Stay in touch with the Department of Chemistry on our Facebook page! Please click on the image below and "like" our page to view the latest news and connect with other friends and alumni.

Like Us on Facebok!

 

The Rubinstein Group

The Rubinstein Group

The research in the Rubinstein Group is in the field of polymer theory and computer simulations. The unique properties of polymeric systems are due to the size, topology and interactions of the molecules they are made of. Our goal is to understand the properties of various polymeric systems and to design new systems with even more interesting and useful properties. Our approach is based upon building and solving simple molecular models of different polymeric systems. The models we develop are simple enough to be solved either analytically or numerically, but contain the main features leading to unique properties of real polymers. Computer simulations of our models serve as an important bridge between analytical calculations and experiments.

 

Most Read Articles of 2013

An article titled "Catalytic Hydrotrifluoromethylation of Styrenes and Unactivated Aliphatic Alkenes via an Organic Photoredox System," published in the journal Chemical Science by Professor David Nicewicz, his postdoctoral assistant Dale Wilger, and graduate student Nathan Gesmundo, has been listed as one of the 25 most read articles of 2013.

Research Image

Chemical Science is the Royal Society of Chemistry's flagship journal, publishing research articles of exceptional significance and high-impact reviews from across the chemical sciences. Research in Chemical Science is not only of the highest quality but also has excellent visibility.

 

Colloidal Plasmonic Copolymers

Professor Michael Rubinsten is one of the authors of an article featured on the cover of Angewandte Chemie, discussing how the resemblance between colloidal and molecular polymerization reactions is very useful in fundamental studies of polymerization reactions, as well as in the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes, and compositions.

Research Image

The article describes how a method has been developed to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures, plasmonic copolymers. The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions.

 

Colloidal Plasmonic Copolymers

Professor Michael Rubinsten is one of the authors of an article featured on the cover of Angewandte Chemie, discussing how the resemblance between colloidal and molecular polymerization reactions is very useful in fundamental studies of polymerization reactions, as well as in the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes, and compositions.

Research Image

The article describes how a method has been developed to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures, plasmonic copolymers. The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions.

 

Face-to-Face Molecules

New research from the You Group, in collaboration with researchers at NCSU, reveals that energy is transferred more efficiently inside of complex, three-dimensional organic solar cells when the donor molecules align face-on, rather than edge-on, relative to the acceptor. This finding may aid in the design and manufacture of more efficient and economically viable organic solar cell technology.

Research Image

The paper appears online in Nature Photonics. Fellow NC State collaborators were John Tumbleston, Brian Collins, Eliot Gann, and Wei Ma. Liqiang Yang and Andrew Stuart from UNC-Chapel Hill also contributed to the work. The work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Science, the Office of Naval Research, and the National Science Foundation.

 

Colloidal Plasmonic Copolymers

Professor Michael Rubinsten is one of the authors of an article featured on the cover of Angewandte Chemie, discussing how the resemblance between colloidal and molecular polymerization reactions is very useful in fundamental studies of polymerization reactions, as well as in the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes, and compositions.

Research Image

The article describes how a method has been developed to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures, plasmonic copolymers. The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions.

 

Colloidal Plasmonic Copolymers

Professor Michael Rubinsten is one of the authors of an article featured on the cover of Angewandte Chemie, discussing how the resemblance between colloidal and molecular polymerization reactions is very useful in fundamental studies of polymerization reactions, as well as in the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes, and compositions.

Research Image

The article describes how a method has been developed to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures, plasmonic copolymers. The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions.

 

 

At the Department of Chemistry, we feel strongly that diversity is crucial to our pursuit of academic excellence, and we are deeply committed to creating a diverse and inclusive community. We support UNC's policy, which states that "the University of North Carolina at Chapel Hill is committed to equality of opportunity and pledges that it will not practice or permit discrimination in employment on the basis of race, color, gender, national origin, age, religion, creed, disability, veteran's status, sexual orientation, gender identity or gender expression."