Research & News

Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially.

In this study, we systematically explore the impact of a variety of functional groups, including nitrogen heteroatoms, fluorine substituents, and cyano groups, on benzotriazole (TAZ)-based acceptor moieties that are incorporated into the conjugated polymers.

Here, we present a molecularly imprinted polymer (MIP)-modified microelectrode (r = 6.25 μm) sensor for the quantification of a pervasive environmental PFAS, GenX (HFPO-DA), in surface water obtained from the Haw River in North Carolina.